Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures.
نویسندگان
چکیده
During limbic epileptogenesis in vivo the dentate granule cells (DGCs) exhibit increased expression of brain-derived neurotrophic factor (BDNF), followed by striking morphologic plasticities, namely the formation of basal dendrites and the sprouting of mossy fibers. We hypothesized that increased expression of BDNF intrinsic to DGCs is sufficient to induce these plasticities. To test this hypothesis, we transfected DGCs in rat hippocampal slice cultures with BDNF or nerve growth factor (NGF) via particle-mediated gene transfer, and we visualized the neuronal processes with cotransfected green fluorescent protein. Transfection with BDNF produced significant increases in axonal branch and basal dendrite number relative to NGF or empty vector controls. Structural changes were prevented by the tyrosine kinase inhibitor K252a. Thus increased expression of BDNF within DGCs is sufficient to induce these morphological plasticities, which may represent one mechanism by which BDNF promotes limbic epileptogenesis.
منابع مشابه
Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus.
Aberrant sprouting and synaptic reorganization of the mossy fiber (MF) axons are commonly found in the hippocampus of temporal lobe epilepsy patients and result in the formation of excitatory feedback loops in the dentate gyrus, a putative cellular basis for recurrent epileptic seizures. Using ex vivo hippocampal cultures, we show that prolonged hyperactivity induces MF sprouting and the result...
متن کاملBeneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats
Objective: The hippocampal formation, particularly the dentate gyrus (DG), shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs) gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigat...
متن کاملIncreased expression of BDNF and proliferation of dentate granule cells after bacterial meningitis.
Proliferation and differentiation of neural progenitor cells is increased after bacterial meningitis. To identify endogenous factors involved in neurogenesis, expression of brain-derived neurotrophic factor (BDNF), TrkB, nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) was investigated. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneum...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 22 شماره
صفحات -
تاریخ انتشار 2002